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ABSTRACT

A dispersion relation for surface plasmons (retardation
neglected) is obtained in the presence of spatial dispersion;

The physical system considered is one of vacuum separated by a

plane interface from a dielectric medium occupying the half-
space x5 > 0, and characte:ized by a nonlbcal dielectric function
e(ﬁ"w|x3xé), assumed to be symmetric in X5 and xé. Here fa is
a two-dimensional wave vector whose components are parallel to
the interface, and w is the frequency of the eiectronagnetic
field in the medium. The dispersion relation has the form
1+k,,x(§,|w|x3-0, xé =0) = 0, and an explicit prescription for
obtaining the function X(E"w]xsxé) is presented. The use of the
dispersion relation is illustrated by apblying it to two examples:
(1) a local dielectric.constant; and (2) the nonlocal dielectric
function used previously by Maradudin and Mills. In both cases

previously obtained results are recovered.
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I. Introduction

Several years ago Ritchie and larusak(l) published a deri-
vation of a dispersion relation for surface plas-ons(z) in the

presence of spatial dispersion. Their result has the simple

form
(-} dk3
1+80 2 -0 . (1.1)

Here e(ﬁ,w) is the frequency and wave vector dependent dielectric
constant of the material out of which the semi-infinite medium

is composed, along whose planar interface with vacuum the surface
plasmon propagates. In Eq. (1.1) ky is the magnitude of the
projection of the three-dimensional wave vector B on the plane

of the surface, and k3 is the component of E normal to the surface,

A centrallassu-ption in the derivation of Eq. (1.1) is that
the electrons in the semi-infinite dielectric medium are reflected
specularly from the surface. It is this assumption which ultim-
ately leads to the appearance of the bulk dielectric constant
€(K,») in Eq. (1.1). '

However, in ;ny real solid it is unlikely that all of the
electrons are roflected specularly from the surface. It is more
likely that some fract;on are scattered specularly apd the rest
diffusely, or that more general boundary conditions obtain. In
any case, it would seem to be desirable to have a dispersion
relation for surface plasmons which does not depend, in its
derivation, on some particular assumption about the nature of the

interaction of an electron with the boundary. Moreover, it
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would also seem to be desirable to have such a dispersion rela-
tion which is not based on the assumption that the dielectric
properties of the medium supporting the surface plasmon are due
to a specific collectiﬁe excitatibn in the medium, viz. an
electron plasma, so that it applies to systems in which

these properties are associated with other electric dipole

excitations such as IR active phonons and excitgns, for example,
or combinations of them. ”

It seemed to be worthwhile, therefore, to try to obtain a
dispersion relation for surface plasmons in the presence of
spatial dispersion of a form similar to that of Eq. (1.1), but
without invoking the restrictive assunétion of specular reflec-
tion of electrons at the boundary of the dielectric, in which
the central role is played by the nonlocal dielectric constant
of the medium, about which a minimum number of assumptions are :
made. : ;

In this paper we present the derivation 61 such a dispersion
relation. It is obtained in Section II, and its use illustrated

by application to systems for which the dispersion relation is

already known in Section III. A discussion of the results

obtained is given in Section 1IV.
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II. The Disggrsion Relation

We assume a diélectric medium which occupies the semi-infinite
region x5 > 0. The region x5 < 0 is occupied by vacuum., Because
the system possesses infinitesimal translgtional invariance in
directions parallel to the surface, the nacfoscopic electric

field and the displacement in it can be expressed in the forms

E@,t) -'E(R.mlxs)e*fu "R - dot ' ' (2.1a)
) > * T
B, t) - B(R,m|x3)eizﬂ.'x“"‘“t _, (2.1b)

where fu - ;lkl*'izkz 5 in - iixl-rizxz , and il and iz are fwo
mutually perpendicular ﬁnit vectors in the plane of the dielectric-
vacuum interface. Within the dielectric medium the relation

between B(ﬁuwl?3) and ﬁ(!um[i3) is assumed to be

B(Ryu|xy) = j dxge(fuwlxaxé)ﬁ(fuw |x3) 2y a0 |
o o :
: (2.2)

where e(!nmlxsxs) is assumed to be synnetric in the variahles xa and xa.-,.

B2

T e ——— e e e,

——————

- —— e e e e o ——t .

Thus, we assume the nonlocal dielectric tonsor of the semi-

SPEA

infinite medium to be isotropic. This assumption is sinilar to
and, bécause of the lower symmetry of the semi-infinite -odiun;

may be as restrictive as the combined assumption by Ritchie and
Marasuk of an 1sotrop1c,'noniocal, bulk dielectric temsor and ‘
specular reflection of electrons from the bbundary The assumption ’é
of 1sotropy, howovor, can be removed from both the present theory :
and that of Ritchie and Marusak. The result in each case is a 3




~more complicated diapersidn reiation.

The assumption of specu-
lar reflection from the boundary, on the other hand, is essential
in the Ritchie-Marusak approach, while it is not in the present

treatment.

I ———

The Maxwell equation
veB(Z,t) =0 (2.3)

is now combined with Eq. (2.2) and with the equation of the
electrostatic approximation

B3,t) = - w@E,t) |, (2.4)

where @(x t) is a scalar potential, to yield an integro-
differential equation for ¢(kﬂ@‘23), the Fourier coefficient of
Q(xyt) .

o [ exgetpuingpadolsy -gh- [ exje@plzgz)) gz otmizp =0 o
o : B YA : o ; '
: (2.5)
To soivi-nq. (2.5) we begin by fornally expanding both
€(Ryu|xgx3) and (d/dxg) €(Epo|x3x3) in double series of
functions co-plote and orthonornal in the seni-iniinita interval

(0,09, and localized in the vicinity of the intortace at x5 = 0:
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e(Ryu|xgx3) = 2 am(l!.,w)epmua)qon(xs) : (2.6a)
m,n
3:—3 €@yujxgzg) = E Jban F10dog (x90y (x3) (2.6b)

Although our final result will be independent of any particular
choice for the'{¢-xx3)}, a convenient choice, for definiteness,

is the set of Laguerre functions defined by

' -38x, L _(px,) :
@n(xa) - ﬁi 4 —nirl 1 (2.7)

where Ln(xs)'is the ntl Laguerre polynomial, and § is a real,

" positive parameter with the dimensions of an inverse length.

-

Because of our assumption that e(k"m|x3x3) is symmetric in
x3 and x3, it is the case that the coefficients { (knw)} are
symstr:lc in the subscripts m and n.

‘We next expand ¢(ﬁumlx3) and (d/dxs)cp(ﬁ,,wlxs) in terms of
- {%<=3>}

T -

o Rynlxg) = Zz Ao (xg) s (2.8a)
& oz = T BBwe,ap . (2.8b)
——— e v - mr—— e - . }%ga.g ‘r

v
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so that
A, (Ryw) = [ dxgo (xg)p Ry ixg) (2.9a)
: o

When we substitute Egqs. (2.6) and (2.8) 1nto‘Eq. (2.5) and use

the orthonormality of the,{gans)}, we find the latter takes the

form
? 5 - *
i» ,‘ Ky n§o a  (Byw)A (Ryw) = n§° b (Byw)B_(kyw) . (2.10)

i - The coefficients {An(in@)} and {Bn(ﬁnw)} are not independent,
however. If we integrate by parts the integral in Eq. (2.9b) we
‘ obtain the result that '

I B, () = = 9p(0)0(ERw|0+) - | axgotiolsy) = Py(xg) » (21D
130 ; . o .

1} where the notation ¢(RB,w|0+) is intended to emphasize that it is
| the potential éh the medium side of the interface that is being

s considered. If we substitute Eq. (2.8a) into the second term on

T T T T R A T R T T 2

the right hand side of Eq. (2.11), we obtain finally the relation

B, (Xyw) = =0 ()0 (Rju|0s) - l;z_:o enphp(Bi) B

R R R G




)

where 2

o .

We note for future reference that enp can be expressed equivalently

as A

enp = £ dx3 l d35¢p(83) Ed; 5(13-X§)¢n(xé) - - mp(())mn(o) -epn :

(2.13b)

On combining Eqs. (2.10) and (2.12) we find that the coeffi-

cient Bn(ﬁ"w) is given by

b o e }‘1 :
| B (Ryw) = - k,2,¢.(i||w|0+)p§0[kﬁt+ e JNPROM (2.14)

where for convenience we have suppressed the argument (f“w) of

the matrices Ekﬁ"w) and B(R w) on the right hand side of this

equation. It follows from this result and Egs. (2.2), (2.4),
(2.6a) and (2.9b) that

® -1
Dy (Rywl0+) = Kip(Rgw]0+) T oepm(o)[kﬁ‘é'lré;' Bt oa (0 .
m,n= _

(2.15)
¥We now turn to the vacuum region x3<=0. In this region the

function m(fnw|x3) is readily found to have the form
kyxq

where A is an arbitrary constant, while the displacement coapo-

nent Dy(Ryw|xz) becomes

kyx
D3(fnw]x3) = - Ak“e s 3 13 <0 . (2.17)




10.

The boundary conditions in the problem are the continuity

of w(g,t) and Da(i,t) across the surface xq = 0. The first of
these yields the relation m(ﬁ“w10+) = A; the use of this result
together with Eqs. (2.15) and (2.17) in the second boundary

condition yields the dispersion relation for surface plasmons

in the form

14k 2 (0%, (fwe (0) =0 (2.18a)
m,n=0 :
? where
% -1
| X Brw) = [sfEt + 5] .  (2.18b)

{ &

It is useful to point out that xmn(ﬁnw) is symmetric in m and

n, For this purpoée it suffices to show that the matrix

k%ﬁ-l +ea gl is a symmetric matrix. Inasmuch as the matrix
=]

a is symmetric because the matrix a is, it is necessary to show ]

only that the matrix £ = 8% & ! is symmetric.

i oo

- To show this we first relate the coefficients {bmn(ﬁﬂw)}

to the coefficients {amn(ﬁuw)} « We see from Eq. (2.6b) that

b By0) = [ axy [ axge (x) T (R lxgxde, ) (2.19)
o (o] -

e aas L oaid etl Loaba o Ml o miiiie i

,An integration by parts yields

Bl . ban Byw) = - [ dxfp (o) €@pwoxde, (x5) ~
: o

- [ axy [ axg (adg on(xg) )E@ o ixaxDo () . (2.20)
o o

; We now sulstitute Eq. (2.6a) into the right hand side of this
' equation, and use Eq. (2,13a) to obtain

R o sty o SRRk B i S B R A0t R AL R 1 B S




11,
b (Byw) = - rEL {mm(o)wr(o) + emr} a. (Byw)
=Ze, a, @ . (2.21)

r

Tﬁe second equality in Eq. (2.21) follows from the use of Eq.
(2.13b).

It follows from Eq. (2.21) that the matrix X can be written
equivalently as

% =2 l@Ta ! - saeT - ¢T (2.22)
where ﬁT denotes the transpose of the matrix ¥, The matrix

i(ﬁuw) is therefore symmetric, and can be written alternatively as

-1
'xmn(g"w) = [k%g.-l + ‘e’?fl'éTlm . N -(2,18¢c)

Equation (2.18) may have some interest of its own in connec-
tion with purely numerical studies of surface plasmons in spatially
dispersive media. However, at this point we direct our efforts
to re-expressing Eq. (2.18) in a form in which the {wm(x3)} no
longer appear explicitly or implicitly.

We begin by introducing the function x(fuwixsxé), which is
defined by

®
x(§"w}x3x§) - % Elo mm(x3)xmn(ﬁ“w)¢n(Xé) Xg,%X3 > O. (2.23)
’

In terms of this function the dispersion relation (2.18) becomes

1+ ky x(Ryw|oo) = 0. (2.24)




\
To obtain the function x(ﬁnw]xsxé) or more accurately,

the equations determining it, we return to Eq. (2.18c), which we

rewrite as

2 -1 -1
ky ? %np Xpn * p?s ®np?pr®sr¥sn ~ ®mn° k3.28)

We now multiply both sides of this equation by ¢m(x3)¢n(xé) an&

sum on m and n from zZero to infinity. We recall the orthonormality

and completeness conditions

: Sun = fod"a%"‘s)%"‘s’ (2.26)
|
~ 5 | ]
i mEL”"(x3)°“(x3) = 5(x3-x3). (2.26b)
i :
| We next note that

(2.27)

«©
T og(xg)ams(Bule, (x3) = € - (Ryw|xgx3),
m,n=0 ;
where e-l(ﬁuw|x3xé) is the inverse of e(ﬁnw]xaxé) in the sense

. that

I: dxé €-l(ﬁ“w|x3x§)e (R“w!xéxé)

| - ] e (Ryw)xgxg) € Ryulxzxg) = b(xg=x3).

Il g ca e E AN R

(2.28)

? We also use the relations

EJ (x)e (x3) = - d_ 5(xq=x5) + 8(xq)5(x5)
m,n-o°" 3’°mn®n""3 [as; 3773 378 ]

(2.292a)

R s }
n,n-ome *3) ©nuPn (x3) 355‘5(‘3 - x3). (2.29b)

—— B

————————




The result of all of this is to transform Eq. (2.25) into

k% Iodxée-l(ﬁ“m]xsxé)x(ﬁ“w!xéxé) - ‘

a o, | T
S &, IOGXs € Ry xgxdgr x@ylxgxy) -
- a(x3)j' daxj e‘l(n,,m1ox§)a:—3, x(Bpw|x3x3) = 8(xg-x3). (2.30)
(o]

Finally, we see that the function x(ﬁuw|x3xé) which satisfies the
integro~differential équation

kﬁ Iodxé G-l(ﬁuwlxsxé)x(ﬁnm|x§xé) -

- a%; [ ax3 € Rulxgd) goxRpulxgxy) = s(xgxp,  (2.310) §
o

together with the boundary condition

fo axj € l(Rym|0 x3) a%g x(Ryw|x5x3) = o, (2.31b)

\ is a solution of Eq. (2.30). As we are seeking electric fields
' localized in the vicinity of the surface x5 = 0, the boundary

condition which must be imposed on x(Eyu|x4x3) at infinity is that

et Mt oss e Jtan su ol 0

; ' lim X(K"m‘xaxé) = 0. (2.31c)
| . xgom

! Equation (2.24), together with the prescription for obtaining

x(fnw|x3xé) given by Egqs. (2.31), is the central result of this

atoban omaal e . p oo ol L gie i

section: the surface plasmon dispersion relation. In the next

o

section we illustrate its use by applying it to two cases for which

the surface plasmon dispersion relation is known.

i
3
v
s
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I1I. Examples

In this section we solve Eqs. (2.31) for two choices of
e(ﬁ“w|x3xé), one local and the other nonlocal, for which the surface
plasmon dispersion relation is already known, to illustrate the use

of the dispersion relation, Eq. (2.24).

A. A Local Dielectric Tensor

We first consider the case in which e(!nw|x3xé) is given by

e®ywixgx3) = €(w)s(xg=x5°), (3.1)

where €(w) is independent of R" and of the coordinates x; and xj.

It follows that
LR yw|xx2) = =2 §(x, - x2) (3.2)
WSS e 8T ;
The equation satisfied by X(K“w|x3xé) in this case becomes
_1;%7 x(Ryolxgxy) - i~ & Ryolxgzg) = s0ag- x (3.3a)
€(w 373 e(w dx S8 3 3
together with the boundary condition

. .
(Byw|x,x2) = 0. (3.3b)
T, xFuelxgzg |x3_o _

The solution of Eq. (3.3a) which vanishes as Xg + « is

-kn|x3-x§|
B 2) = = £ _
x (Ko |xgx3) e(w){ =i + A

=kuyX
g i (3.4)

where the first term is the particular integral and the second is

the complementary function. The coefficient A is determined

e e T T T T T T SR
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with the aid of Eq. (3.3b), with the result that
: -ky |x3-x3| =k (x3+x3)
x(f|mlx3x3) - §éfl {s + e }. 8 (3.5)

When Eq. (3.5) is substituted into Eq. (2.24), we obtain as the
surface pIashon dispersion relation
1+ € =0, : (3.6)

a well-known result for this cass.(s)

B. A Nomlocal Dielectric Conmstant

The second example we consider is based on the nonlocal

dielectric function

wz 1r{x3-xé|_

e(Ryu|xgxy) = €,8(xg-x3) + 1 Eg'r e

x3:%3 20, (3.7)

Agarwal, Pattanayak, andbtoltg6), in studies of various optical opti-
cal proportiot of semi-infinite media’ 1n.the presencs of spatial

disporsion. Th.ro are some unphysical features of the

model underlying this form for e(ﬁ'm|x3x3), as will be discussed 'Tf—n
in the following section. !owover, because results based on its use are
available it serves as a useful e;anple to illustrate Eq. (2.24),
which is not restricted by these unphysical features. In Eq. (3.7)

€ 1s the optical ffoquoncy dielectric constant, which is assumed

to be real and frequency independent; w_ is a plasma frequency;

P
D is a positive constant which defines the curvature of the exciton
or transverse optical phonon dispersion curve at B = o; and T is

given by
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2 2 i
W - 3
r= (__5_2 o kﬁ i !%x) : ; (3.8)

so that Re T > 0, Im T > 0. The frequency Wy in Eq. (3.8) is
that of the exciton or transverse optical phonon at B = 0,
The equation for the inverse dielectric function

e'l(gnwtxaxé), Eq. (2.28), in the present case takes the form

2 :
- iw o ir|x,=-x3| _ ,
€ l(ﬁnwlxaxé) + !G—o& _rodx:‘; e | .8 € l(ﬁnwlxéxé) -

2

We apply the operator (dz/dxg) + T2 to both sides of this

equation to transform it into

2 2
d 2\ -1 1/ d 2
+ a°)e T (Rywlxaxs) = + T7°)6(Xp=x3) (3.10)
(;;g )€ Ryalxgxg z;(;;g )8 (x3-x3),
where . wz-mz 3 |
a = ( AD e kf + i%l) : (3.11a)
and S
wi - wﬁ + (“:/Eo)' | (3.11b)
so that Re ¢ > 0, Im ¢« > 0. We now use the fact that v
o : 2_ 2 ialx,-xi] |
(::12 + az){b(xs-xé) + I!'I::_ e e } -
3 _ q
2 |
d 2 |
a5 + I )8(xq =x3) (3.12) |
o i e

to write the solution of Eq. (3.10) in the form

s R et




2 a|xg-x3|

w
€l (Ryu|xgxy) = & s(xgx3) + -§; S+ A %, (3.13)
o Go )

‘The coefficient A is obtained by requiring that the expression
(3.13) also satisfy the original integral equation (3.9). In this

way we obtain final}y the result that

e'l(!nwlx3x§) . %— 8(x3=x3) +
o

2
w lo|x,-x2 | il (x,+x3)
1 33 a-T 33
. 255'513 [e + air © ]
o
1 V4 A V4
= E; 5(x3-x3) + f(R“wlxaxs).
We note the result that

.2
2 w
d 2 ’ ’
(—'2' + & )f(ﬁ“wlxsxs) o —% 6(x3-x3)0
dx3 €o

The integral equation (2.31a) for the function x(ﬁnwlxaxé)

now takes the form

< 2‘ ) @
1 d 2 ’ d ” n
& (357 - x)x@Ryelxgz) + g5 [ axgr®olxgxg) x
3 :

X ;fg x(ﬁnm|x§xé) - kf Iodxéf(ﬁ“w]x3x§)x(ﬁnwlx§x§) -

= =8(x3-x3).

We now apply the operator (dz/dxg) + a° to both sides of this

equation, and use Eq. (3.15), to obtain

1ax3




2 2 2
d 2 d 2 d - 2
(;;g n)(;;g B )x o | xzx3 o ;;g ) 37%3

v@ere wz-wz i
g = (=2— + xj - Y)" - -, (3.18)

so that Re g > 0, Im g'< 0. The solution of Eq. (3.17) which

vanishes at infinity is given by
-kn1x3-xé]

: € :
x(ﬁ|w]x3xé) - - ;_2_-9:2 [(cz-l»k%) e —‘JE“ "
2 ]

-8 | X, =x2
B ‘ 3 °3 l -knxa -5x3

- (q2+az) g 5 ] + C,e + Cye é (3.19)

The two coefficients C1 and C2 in this solution are determined
from the two equations obtained by requiring that the solution
(3.19) satisfy the integro—dit:erential equation (3.16) on the one
hand, and from the boundary condition (2.31b) on the other. After

some tedious analysis the_following result is obtained:
£ -k | xq-x3 |
e Eémz 3 73

iky+a iky-T -ku(xs-n-xé)] (e(w)= €) 11"183-8:;]
+

+ -{r'_-; m e b5 ol e ’ (3.20)
where 2
“p

€(w) = €, + ) (3.21)

Wy =w = iwy

is the bulk dielectric constant at E = 0, and where Eq. (3.18)

has been used.
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Substitution of Eq. (3.20) into Eq. (2.24) yields as the
dispersion relation for surface plasmons
iky+a 1k~ ky
w -
1+ gé—L [1 + m mu—*'f + m(é((ﬂ) » 60) 0. (3.22)

This equation can be rearranged into the form

€(w)-€,

o - -~
l+¢e(w) = m“[e(w) WE“::ET’- t =gl . (3.23)

Inasmuch as the right hand side of this equation is explicitly
proportional to k;, in obtaining the frequency of the surface
plasmon to lowest nonvan:lsh:l.pg order in ky it suffices to set

ky = 0 in the expresé:lon in braces. We thus obtain the approximate

dispersion relation

5 I €(w) - €

1+ e(w) = 1k'[é(w)('r--; + °]k“_o . (3.24)

At this point we neglect the intrinsic damping in the dielectric
medium and let y tend to zero through positive values. In this
limit we find that

Ik = 0) = 10732 - Bt w<u,
ok _ (3.25)

- D-i(w2 - wg) w>w,

a(ky = 0) - :I.D'i(wg - mz)i w<wp
' (3.26)

- D-(}(m2 - mz)i : w>wp .
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We next note that the equation €(w) + 1 = 0 is the surface
plasmon dispersion relation in the absence of spatial dispersion.
Consequently the frequency of the surface plasmon in the absence

of spatial dispersion, w is the solution of the equation

s’
€(wg) +1 =0 : (3;27)
We thus 'r1£; the solution qf Eq. (3;24) in the form
w = w, + dw, , (3.28)

where Aw, is of first order in k. Substituting Eq. (3.28) into
Eq. (3.24) and linearizing the resulting equation in Awg with the
aid of Eq. (3.27) we obtain

1k|| 3+€
by = — [% -2 (3.29)
- €' (wy) 2r Jk;=0

If we denote the static (w=0) value of the bulk dielectric

constant at k = 0 by Gs, we have the relation

€L mE. (w:/wg) i (3.30)

With the substitution of Eq. (3.21) (with y=0) into Eq. (3.27) we
find that the frequency of the surface plasmon in the absence of

spatial dispersion is given by

2
2 _2 W
oy = wg + i:f; ; (3.31a)

. or equivalently
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: [1+€8‘]i
wg = Tjji; w, 1 (3.31b)

It is readily determined that

wy < wg < wy . ' (3.32)

These inequalities, together with Eqs. (3.25) and (3.26), enable

us to express dwg given by Eq. (3.29) in the form

3
D’k, F 1 - i +3) 1

T S8 ]
i L |.<m§-wg>* 2 wi-ud

o

i 3
D%(1 +€ )%k € _+3 7] .
- o [:eoit -1 =25 ] : (3.33)

mpe'(ws)

which agrees completely with the result for Ams obtained by

5
Maradudin and Mills( ) on letting the speed of light tend to

infinity in the surface polariton dispersion relation they

obtained on the basis of the dielectric constant (3.7).

T
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IV. Discussion

In this paper we have obtained an explicit dispersion relation
for surface plasmons at the interface between vacuum and a semi-
infinite dielectric medium occupying the half-space x3:>0 and
characterized by a nonlocal dielectric constant €(§“w|x3xé). It
should be remarked that the derivation of Egs. (2.24) and (2.31)
presented here is somewhat artificial. It should be possible to
obtain these results more directly, but we have not attempted to

do so. It also appears as if the use of Egqs. (2.24) and (2.31)

"to obtain the surface plasmon dispersion relation may involve

lengthier calculations than are required in‘a more conventionﬁl
approach based on a direct solution of the equations of electro-
statics. Nevertheless, it still seems useful to have an explicit
dispersion relation, Eq. (2.24), with a definite prescription for
obtaining the function x(§"w|x3xé) entering it, Eq. (2.31). For
example, in the case of dielectric constants of more complicated

form than those considered in the preceding section Eq. (2.31)

can serve as the basis for approximate determinations of X(R"w|x3xé),

e.g. by variational methods.

The fact that the method developed here yields the same surface
plasmon frequency, Eqs. (3.28), (3.31), and (3.33), as was obtained
by a rather different method by Maradudin and Mills(s) is of some
independent interest for the following reason. The dielectric
constant (3.7) is obtained by partially Fourier transforming the

bulk dielectric constant

€(k,w) =€_+ (4.1)
; ° qu«»m: -g® = sy

ol s " e e e g o T —a
e e e R e

o
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according to

@ 3 /

G(Euw|x3xé) = I ;;Q G(E,w)eiks(x3 %3 : (4.2)
-

and restricting xg and xé to be positive. Recently Horing(7) used
€(k,uw) as given by Eq. (4.1) in the Ritchie-Marusak dispersion
relation, Eq. (1.1), and obtained an expression for the frequency
of a surface plasmon which differs from the Maradudin-Mills result,
Eqs. (3.28), £3.31), and (3.33). This difference is not very
surprising in fact. As we have noted in the Introduction, under-
Iying the Ritchie-Marusak dispersion relafion is the assumption
that electrons are reflected specularly from the surface of the
solid. The dielectric comnstant (3.7), on the other h#nd, repre-
sents the so-called dielectric approximation, in which the bulk
dielectric constant is partially Fourier transformed according to
Eq. (4.2), after which x5 and xé are restricted to be positive, so
that the resulting E(E"wlxaxé) is no longer a function of x3-xé,

but depends on x, and xé separately. It is known that the dielectric

approximation does not conserve particle number(S), and causes the
surface to act as a source or of energy(g), neither of which
is the case when specular - .4 is assumed. Thus a different

physical situation is‘being considered in Horing's work from that
assumed in the work of Maradudin aﬁd Mills. Consequently, it is
not surprising that different surface plasmon frequencies are
obtained in these two calculations. However, this example points
up the deésirability of having a dispersion relation for surface

plasmons which is valid for more general physical situations than

|
|
|
|
:
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is represented by the assumption of specular reflection at the
Bue surface. Equations (2.24) and (2.31) provide such a dispersion
relation. ‘
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